这些融合结构被称为合胞体(syncytia),HIV和单纯疱疹病毒等病毒感染会诱导形成合胞体,但SARS病毒就不会,伦敦国王学院的分子生物学家Mauro Giacca说。Giacca领导的团队在4月发表了这项研究结果[18]。他的假设是,形成合胞体能让受感染细胞存活更长时间,制造更多病毒颗粒。“这不是一个会肇事逃逸的病毒。”他说。“它会一直存在。”中国医学科学院研究员孙强领导的另一支团队发现,新冠病毒感染的一些细胞甚至会与淋巴细胞形成合胞体,淋巴细胞是人体自身的免疫细胞[19]。这其实是肿瘤细胞的免疫逃逸机制,而非病毒的机制,提示我们受感染细胞会抓住周围的免疫细胞并与之融合,轻而易举地逃过免疫系统的侦查。 细胞内部的变化就更多了。内质网(ER)是参与蛋白合成与转运的平面膜系统,和其他冠状病毒一样,新冠病毒会将又长又细的内质网变成一个具有双层膜的球体,就好像内质网在吹泡泡一样。这些双层膜囊泡(DMVs)或许能为病毒RNA提供一个复制和翻译的避风港,保护其不被细胞内的天然免疫传感器发现。当然,这个假说仍有待验证。 参与制造DMVs的蛋白或许是很好的药物靶点,因为它们对病毒复制好像起着不可或缺的作用。比如,TMEM41B这种宿主蛋白必须被用来调动胆固醇和其他脂质来扩大内质网膜,以便所有病毒成分都能进入其中[20]。“把TMEM41B拿走会对感染产生很大影响。”参与这项研究的得克萨斯大学医学部的新冠病毒研究员Vineet Menachery说。此外,新冠病毒跨膜蛋白Nsp3也可作为药物靶点:它会在DMVs上形成冠状孔,将制造好的病毒RNA转运出去[21]。 大部分具有外层膜(即包膜)的病毒获得这一特征的方式是直接在细胞边缘组装,并在离开的路上选择一些细胞自己的质膜。但新制造好的冠状病毒蛋白会选择另一个途径。 多年来的证据已经表明,冠状病毒会通过高尔基复合体转出细胞。高尔基复合体是具有邮局功能的细胞器,能将分子包在膜内,运送至细胞其他部位。病毒会在那里从高尔基体膜形成一个脂质包膜;新形成的病毒颗粒再在高尔基囊泡中转运到细胞表面,并分泌到胞外,美国约翰斯·霍普金斯大学病毒学家、生物学家Carolyn Machamer说。Machamer研究冠状病毒已经有30年了。 但在去年12月,美国国家心脏、肺和血液研究所的细胞生物学家Nihal Altan-Bonnet和她的同事报道,他们发现了冠状病毒会通过溶酶体离开细胞——溶酶体是细胞的垃圾桶,拥有很多能分解细胞成分的酶[22]。阻断基于高尔基体的分泌途径似乎不会影响释放的感染病毒数量,Altan-Bonnet说。她团队的证据[22]显示,病毒蛋白在内质网出芽形成包膜,再占用溶酶体离开细胞。目前,该团队正在检测阻断溶酶体出胞过程的抑制剂是否能成为潜在的抗病毒药物。 无论是通过高尔基体还是溶酶体离开细胞,都比通过质膜出芽要慢、效率也更低,所以研究人员不明白新冠病毒为什么会这么做。Machamer推测,相比质膜,来自高尔基体或溶酶体的包膜的脂质组成好像对新冠病毒更有利。“如果我们能更好地理解这个部分,就有很大的机会找到新的抗病毒疗法。”她说。
最后一切 在离开细胞时,还有一步让这个病毒成为传染王:在有5个氨基酸的位点进行快速切割能让该病毒准备好攻击下一个目标。 其他冠状病毒在刺突蛋白S1和S2亚基的连接处只有一个精氨酸,新冠病毒却有5个连着的氨基酸:脯氨酸、精氨酸、精氨酸、丙氨酸、精氨酸。“由于这个位点非常特殊,我们就盯着它,最后发现这个位点确实是侵入肺部细胞的关键。”Pöhlmann说。2020年5月,他和同事报道了名为弗林(furin)的宿主细胞蛋白能识别并切割这个氨基酸链,而且这种切割对于新冠病毒快速进入人肺部细胞是“至关重要的”[23]。 这不是研究人员第一次在病毒上发现弗林切割位点;致病性很高的禽流感病毒也有这个位点,Barclay说。当一位同事把培养的自然失去弗林切割位点的新冠病毒变异株给到Barclay时,她的团队发现感染该毒株的雪貂比感染大流行毒株的雪貂脱落的病毒颗粒更少,而且不会将病毒传给周围的动物[9]。正当Barclay的团队准备在2020年9月的预印本论文中报道该结果时,荷兰的一项研究也发现,拥有完整弗林切割位点的冠状病毒进入人气道细胞的速度比没有弗林切割位点的更快[24]。 研究人员推测弗林会在病毒颗粒组装过程中或是释放前切割该位点。这个时间点解释了新冠病毒为何会通过高尔基体或溶酶体离开细胞,芝加哥洛约拉大学的病毒学家Tom Gallagher说。“这个病毒一经组装就会移动到周围都是弗林蛋白酶的细胞器中。” 通过剪切S1和S2亚基之间的连接键,弗林酶切让病毒颗粒的刺突蛋白松开,以便它们在进入细胞时对TMPRSS2的二次切割产生反应,这次切割暴露出的疏水性区域会快速将自己嵌入宿主细胞膜内,Gallagher说。如果刺突蛋白没有被弗林蛋白预先切开——有时也不会被切开——它们就会绕开TMPRSS2,通过更慢的核内体途径进入细胞,或是根本不进入细胞。 Alpha和Delta变异株的弗林切割位点都发生了变化。Alpha变异株将本来的脯氨酸替换成组氨酸(P681H);Delta变异株则替换成了精氨酸(P681R)。这两个变化都会减少序列的酸性;而且氨基酸链碱性越强,它们被弗林识别切割的效果也更好,Barclay说。“我们的假设是,这体现出新冠病毒的传递能力增强了。” 更多弗林酶切意味着更多刺突蛋白准备好进入人体细胞。SARS病毒只有不到10%的刺突蛋白做好了这种准备,Menachery说。Menachery的实验小组一直在量化这些做好准备的刺突蛋白,但研究成果尚未发表。对新冠病毒来说,这个比例上升至50%,而Alpha毒株超过了50%,该团队发现,在传染性很强的Delta毒株中,75%以上的刺突蛋白准备好继续感染人体细胞。
走向未知 科研界其实才刚刚开始理解新冠病毒。一些关键的未知数还包括:与每个刺突蛋白结合所需的ACE2受体数量;S2位点究竟是何时被TMPRSS2切割的;病毒外膜与细胞膜融合所需的刺突蛋白数量,McLellan说,而这些还只是入胞的问题。2020年4月,加州大学旧金山分校的一个团队鉴定出了新冠病毒与人类蛋白质相互作用的至少332种方式[25]。 想要赶上这个快速变异的病毒很不容易。但专家一致认为,迄今发现的主要是变异与病毒传播速度的相关性,而不是与病毒对宿主伤害的相关性。7月的一项研究报道,Delta变异株在肺部和喉部的生长速度比之前的变异株快很多[26]。 但是,现在还不确定Delta携带的突变如何以这种方式为其毒力加码,Stern-Ginossar说,“许多实验室正在竭力回答这些问题。”
参考文献: 1. Casalino, L. et al. ACS Cent. Sci. 6, 1722–1734 (2020). 2. Ke, Z. et al. Nature 588, 498–502 (2020). 3. Turoňová, B. et al. Science 370, 203–208 (2020). 4. Nguyen, H. L. et al. J. Phys. Chem. B 124, 7336–7347 (2020). 5. Shang, J. et al. Nature 581, 221–224 (2020). 6. Gobeil, S. M.-C. et al. Science https://doi.org/10.1126/science.abi6226 (2021). 7. Khateeb, J., Li, Y. & Zhang, H. Crit. Care 25, 244 (2021). 8. Hoffmann, M. et al. Cell 181, 271–280 (2020). 9. Peacock, T. P. et al. Nature Microbiol. 6, 899–909 (2021). 10. Wang, M. et al. Cell Res. 30, 269–271 (2020). 11. Gunst, J. D. et al. EClinicalMedicine 35, 100894 (2021). 12. Finkel, Y. et al. Nature 594, 240–245 (2021). 13. Schubert, K. et al. Nature Struct. Mol. Biol. 27, 959–966 (2020). 14. Thoms, M. et al. Science 369, 1249–1255 (2020). 15. Zhang, K. et al. Sci. Adv. 7, eabe7386 (2021). 16. Blanco-Melo, D. et al. Cell 181, 1036–1045 (2020). 17. Thorne, L. G. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.06.06.446826 (2021). 18. Braga, L. et al. Nature 594, 88–93 (2021). 19. Zhang, Z. et al. Cell Death Differ. https://doi.org/10.1038/s41418-021-00782-3 (2021). 20. Trimarco, J. D. et al. PLoS Pathog. 17, e1009599 (2021). 21. Wolff, G. et al. Science 369, 1395–1398 (2020). 22. Ghosh, S. et al. Cell 183, 1520–1535 (2020). 23. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. Mol. Cell 78, 779–784 (2020). 24. Mykytyn, A. Z. et al. eLife 10, e64508 (2021). 25. Gordon, D. E. et al. Nature 583, 459–468 (2020). 26. Li, B. et al. Preprint at medRxiv https://doi.org/10.1101/2021.07.07.21260122 (2021). 原文以How the coronavirus infects cells — and why Delta is so dangerous标题发表在2021年7月28日的《自然》的新闻特写版块上 |