5.3.2 提取方式 选择提取方式应重点考虑药品的制备工艺条件及与密封件接触的实际情况;如,可以将密封件按照一定的比例浸泡于提取溶媒中。为减小样品的尺寸,或得到更多的可提取物信息,可将密封件切割成小条或块,但应避免如碾磨等剧烈手段;也可以将提取溶媒加入与密封件配套的包装容器(如西林瓶、铝罐等)中,并用密封件密封后进行提取。 常用的提取方式包括在提高温度条件下的加速提取、超声提取、索氏提取、回流提取和强化的灭菌工艺循环提取等。各种提取方式都具有各自的优点和局限;如回流提取的效率较高,但提取介质为水溶液时,由于水的沸点较高,回流提取则过于苛刻,可能导致某些有机可提取物发生进一步的降解;在密封容器中采用超出加速试验条件的方式提取可能更接近实际的迁移效果;研究者可根据药品及密封件的特性综合考虑选择适合的提取方式。 5.3.3 检测方法及方法学验证 根据密封件的配方和加工工艺,初步确定其可提取物的种类及性质;再根据待测物的性质和测试目的选择适宜的分析方法。 密封件可提取物及分析方法,包括(但不限于):硬脂酸和软脂酸(GC-MS)、正己烷(GC、HPLC)、酚类抗氧化剂(BHT,lrganox 1010,Irganox 1076;HPLC)、卤代低聚物(GC)、元素离子(Mg,Ca,Zn,Si,Ti,Al;ICP-OES)、硫、氯化物和溴化物(IC)、亚硝胺及亚硝胺类化合物(GC-NPD、GC-MS、GC-TEA)、2-巯基苯并噻唑(GC-FPD)、多环芳烃(GC-MS)等。 检测样本的制备 应根据待测物的性质及检测方法的灵敏度,制备检测样本;因提取液或模拟提取液中可提取物的浓度通常较低,需经过适当的前处理过程制备可提取物检测样本。 如分析方法足够灵敏,可采用提取液或模拟提取液直接进行分析测定,无需富集处理;如直接测定提取液或模拟提取液,分析方法的灵敏度达不到检测要求时,常用的检测样本制备方法有:①减压浓缩富集:采用减压旋转蒸发浓缩的方法制备检测样本,但需注意防止温度过高影响样本中待测物的稳定性,避免样本在富集处理过程中待测物进一步降解的情况发生;②液相/固相萃取:对提取液或模拟提取液进行液相/固相萃取;但需注意液相萃取溶剂和固相填料及洗脱溶剂的选择,建议采用加内标的方法,确保待测物的有效富集。③衍生化:为提高待测物的挥发性或紫外吸收强度,可选择适宜的衍生化试剂对待测物进行衍生化处理。 检测方法 无机物(元素):主要为水性介质样品,检测方法有:电感耦合等离子体原子发射光谱法(ICP-OES),电感耦合等离子体-质谱法(ICP-MS),原子吸收分光光度法(AAS)等; 有机物:有机介质样品或水性介质样品,主要检测方法有:高效液相色谱-二极管阵列检测法(HPLC-DAD)、高效液相色谱-质谱法(HPLC-MS)、离子色谱法(IC)、气相色谱-氢火焰离子化检测法(GC-FID)、气相色谱-火焰光度检测法(GC-FPD)、气相色谱-氮磷检测法(GC-NPD)、气相色谱-热能检测法(GC- TEA)、气相色谱-质谱法(GC-MS)和傅里叶变换红外光谱法(FTIR-ART)等。 对于需要特别加以关注的物质,如多环芳烃类(PAHs 或PNAs)、N-亚硝胺类、邻苯二甲酸酯类和巯基苯并噻唑(MBT)等,应开发高灵敏度的检测方法对密封件中的可能残留进行检测。 方法学 首先采用半定量的方法对全部可提取物进行测定,建立方法的AET,然后对超过AET的可提取物进行鉴定,对经鉴定确认结构的可提取物采用对照品/内标法进行定量/半定量测定。 半定量方法的方法学确认 半定量方法的确认重点考察方法的系统适用性和灵敏度;例如GC-MS法,选择合适的标准品来评价仪器的系统适用性和灵敏度(检测限),选择合适的内标(可提取物对照品不能获得或其结构尚不能完全确认)建立半定量的分析方法。 定量方法的方法学验证 对确定结构的可提取物,采用对照品,进行全面的方法学验证,包括准确度或回收率、精密度(重复性、中间精密度)、专属性、检测限、定量限,线性和范围等。 进行密封件可提取物测定时需注意: 1)应根据提取液及待测物性质的不同,选择适宜的分析测试方法和样本的前处理方法。如,对水性溶液宜选择合适的溶剂进行萃取转换和浓缩后采用GC-MS/FID进行挥发性物质的分析;对于水性溶液可以直接进样HPLC-MS/DAD进行不挥发性物质的分析;对有机相溶液,一般不使用ICP-MS/OES方法等。 2)应选择合适的标准品来评价仪器的系统适用性和灵敏度(检测限)。如使用适宜的混合标样来评价GC-MS/FID的系统适用性;如在溶剂转换前加入内标用于评价溶剂转换效率等。 3)常用半定量分析方法对所有被检出的可提取物进行测定。由于离子化效率存在差异,质谱检测器多用于定性分析,定量则常采用通用型的检测器,如FID、紫外-可见检测器(UV)等;对于已经被鉴定的可提取物,如果可行,应采用合法对照品进行定量分析;对于那些无法获得合法对照品的可提取物,可以比较可提取物与内标或其他相似分子结构的替代参比物质的响应(或响应因子)来估算水平;应使用一种或多种合适的内标来提高方法的准确度和精密度。 由于密封件组分非常复杂且存在较多的变更风险(密封件配方中所用物料的供应商发生变更,密封件的配方或加工工艺发生变更等),建议研究者积累密封件提取试验获得的可提取物数据(尽可能规范可提取物的检测条件),建立可提取物数据库,可提取物数据库即可有助于可提取物的鉴别还可以用于密封件常规的质量控制。 5.3.4 可提取物结果分析 由于初始可提取物的筛选检测常为半定量的方法,且考虑可提取物结构差异响应因子的不同,因此在应用分析评价阈值(Analytical Evaluation Threshold, AET)的时候,应设立适当的不确定度;对于GC/MS来说常用的不确定度为50%,即将50% AET作为最终的AET。对于检出的超过AET的可提取物应进行鉴定,鉴定方法可以用质谱图的特征离子峰等,被鉴定的可提取物可分为4类:①确定的:可用现有数据推断化合物的身份或为其身份鉴别提供有力的证据,并有权威标准作为其二维证据;通过相关的研究信息推断待测物的结构,并与标准物质进行比对最终确认。如,通过质谱的分子离子峰推断化合物的分子量(或元素组成)、碎片峰分析推断其化学结构,并与标准品具有相同的波谱特征和保留时间。②可能的:可以从现有数据推断化合物的身份或对其身份鉴别提供有力的证据,但缺乏权威标准作为其二维证明。如,通过质谱的分子离子峰推断化合物的分子量(或元素组成)、碎片峰分析推断其化学结构。③不确定的:可以用现有数据进行鉴定;但数据不够明确或者不够有力。如,只能获得一部分信息,碎片离子,部分基团。④未知的:现有数据无法对化合物进行定性;如,没有或信息不足。
|